

En-Roads Group 25

Tax and Fill the Cracks

Noor, Hemanth, Jeff, and Joby

Section 1: Summary Actions & Outcome Decarbonization through disincentives and carbon capture tech

Carbon tax = increase cost of dirty energy

- Carbon price = \$100/ton CO₂
- By stages = 30 years
- Disincentivizes coal, oil, natural gas

B&I efficiency = to avoid carbon tax

• Lower emission from higher efficiency in new buildings & industry = 4.2%/year

Methane = to avoid carbon tax

- Lower emissions from
 - Agricultural & waste emissions = -30%
 - Energy & industry emissions = -30%
 - o HFC phase-out: by 2050

Carbon removal

• Tech advancement = 81%

ASSUMPTIONS:

Economic growth transition = 15 years (from 75 years)

https://en-roads.climateinteractive.org/scenario.html?v=22.9.0&p39=100&p40=2023&p41=30&p47=4.2&p59=-2&p209=1&p60=-30&p61=-30&p254=2050&p236=15&p67=81

Section 2: Meeting the Goals

Long-lasting positive impact with reasonable trade-offs

		Climate	Economy	Equity	Environment	Realism
1	Carbon Tax	@	@	e	<u></u>	\cong
2	B&I Efficiency	۲	۲	<u></u>	e	<u></u>
3	Methane	۲	<u></u>	e	e	\simeq
4	Carbon Removal	۲	<u></u>	<u></u>	<u></u>	<u>^</u>
	Overall	Limit temp increase to 2 Celsius by 2100	Long-term, balanced focus on intergenerational equity	Finance transition in developing economies against higher tax revenue	Lower air pollution; Lower sea level; Better crop yield;	Reasonable, gradual changes (yearly increase of \$3 carbon price)

Climate

	Climate
Carbon Tax	۲
B&I Efficiency	e
Methane	e
Carbon Removal	٠

- We model temp increase to 2 Celsius by 2100
- Focused on actions that could drastically reduce CO2 emissions.

• Will have global challenges to adhere to carbon tax, methane capture, and global investment in carbon capture.

Economy

	Economy
Carbon Tax	۲
B&I Efficiency	۲
Methane	<u></u>
Carbon Removal	<u></u>
Overall	Long-term, balanced focus on intergenerational equity

- We have a lot of uncertainty on how to model and measure economic progress.
- Currently, we don't account for the social cost of carbon (externalities).
 - This might affect RGDP
- Believe there are other positive economic impacts
 - For instance, B&I efficiency could reduce the energy burden often placed on disadvantaged communities and would reduce global inequality.

"[GDP] measures neither our wit nor our courage, neither our wisdom nor our learning, neither our compassion nor our devotion to our country, it measures everything in short, except that which makes life worthwhile." - Robert F Kennedy

Environment - just hang in there!

Ocean Acidification kept in control -80%

PM_{2.5} emissions reduction from baseline -73%

Reduction in probability of ice-free arctic in the summer -7.5%

Reduction in decrease in crop yield from temperature -3%

Reduction in additional deaths from extreme heat

Realism over Cynicism - Change we can expect!

\$3.3	per
yea	ar

Increase in carbon taxes over 30 years 4.2% per year

Increase in building efficiency -30%

Reduction in methane and other greenhouse gases **81%**

Technological carbon removal incentivized by carbon taxes 15 years

To reach stable GDP per capita growth rate

Equity

	Equity
Carbon Tax	۲
B&I Efficiency	<u></u>
Methane	<u></u>
Carbon Removal	<u></u>

- We propose a carbon tax paired with a lump-sum rebate (revenue neutral) that would increase the global tax code's progressivity significantly
 - ~\$2T in tax revenue could theoretically be used to give \$200 to every human by 2050
- Building and industrial efficiency initiatives must focus on investing in disadvantaged communities (i.e. Justice40 Initiative)
- We are unclear how significant methane emissions and a jump in carbon capture technology would have significant equity impacts

Section 3: Reflections

Winners	Losers	
Disadvantaged communities	Fossil fuel companies	
Green Tech	Countries with large reserves of fossil fuels	
Environment		
Our children		

• Group Surprises

- We need to make big assumptions above the status quo/trend lines in order to limit warming to 2°
- Carbon price = universal lever
- Emotional Feelings uncertainty, scared, hopeful
- Hope & Personal Action all of us here today taking a week of summer vacation to focus on the critical issue of our lifetimes

Actions

Carbon Pricing and Energy Standards

- Carbon Price = 100 \$/ton CO2
- Year carbon price starts to phase in = 2023
- Years to achieve initial carbon price = 30 years

Buildings and Industry Energy Efficiency

 Energy efficiency of new buildings and industry = 4.2 %/year

Economic Growth

Transition time = 15 years

Methane & Other Gases

- = Agricultural and waste emissions (CH₄ & N₂O) = -30 %
- Energy and industry emissions (CH₄, N₂O, & F-gases) = -30 %
- HFC phase out start year = 2050 year

Technological Carbon Removal

 Technological carbon removal (% of max potential) = 81 %

Outcomes

Temperature Increase in 2100 2.0 °C / 3.7 °F

CO₂ Concentration in 2100 451 ppm

Sea Level Rise in 2100 0.6 m / 1.9 ft

Cumulative Avoided CO₂ by 2100 3,124 gigatons CO₂

Section 1: Summary Actions & Outcome Decarbonization through disincentives and carbon capture tech

Increase cost of dirty energy supplies

- Carbon price = \$100/ton CO2
- By stages = 30 years
- Disincentivizes coal, oil, natural gas

Reduce GHG footprint

- Efficiency improvement in new buildings & industry = 4.2%/year
- Lower emissions from
 - Agricultural & waste emissions = -30%
 - Energy & industry emissions = -30%
 - o HFC phase-out: by 2050

3

Remove CO2 in air to bridge the remaining gap

• Tech advancement = 81%

ASSUMPTIONS:

Economic growth transition = 15 years (from 75 years)

https://en-roads.climateinteractive.org/scenario.html?v=22.9.0&p39=100&p40=2023&p41=30&p47=4.2&p59=-2&p209=1&p60=-30&p61=-30&p254=2050&p236=15&p67=81

Section 2: Meeting the Goals

		Climate	Economy	Equity	Environment	Realism
1	Carbon Tax	@	@	@	<u>.</u>	
2	B&I Efficiency	@	@		<u></u>	<u></u>
3	Methane	<u>_</u>	<u></u>	<u></u>	<u></u>	2
4	Carbon Removal	۲	<u></u>	<u></u>	<u></u>	<u></u>