
Machine Learning for Wind Turbine Output Prediction

Hemanth Hariharan, Taylore Givens, Ziyad Gawish

Abstract—Renewable power forecasting plays a vital role in
the efficient and reliable integration of renewable energy into
the electricity grid. Renewable power forecasting is predicting
the energy output of wind turbines based on various factors
such as time, and wind speed. Forecasting supports grid stability,
reduces costs, minimizes environmental impacts, and helps in
long-term energy planning and resource optimization. Due to
the temperamental nature of renewable energy resources and
the increasing demand for reliable renewable power, accurate
forecasting is becoming critical for the success of sustainable
and resilient energy systems.

Machine learning is increasingly being used to improve the
accuracy of wind forecasts. In particular, given decades of
wind energy data, wind power forecasting gives us the potential
to maximize the benefits of wind energy while ensuring grid
reliability and stability, given the inherent risk in wind resources
as compared to solar or other renewable sources.

I. INTRODUCTION

In Wind Turbines, SCADA (Supervisory Control and Data
Acquisition) systems measure and save data like wind speed,
wind direction, generated power, etc. in 10-minute intervals.
This project utilizes data obtained from an operational wind
farm in Turkey over a year.

The features in the data include:
1) Timestamp (at 10-minute intervals)
2) LV Active Power (kW): The instantaneous power gen-

erated by the turbine
3) Wind Speed (m/s): The wind speed at the hub height of

the turbine
4) Theoretical Power Curve (KWh): The theoretical power

a turbine generates with that wind speed (provided by
turbine manufacturer)

5) Wind Direction (°): The wind direction at the hub height
of the turbine

An exploratory analysis was first conducted on the data
to identify patterns, trends, and correlations between various
features. Active Power and Wind Speed were found to
be directly correlated with our target variable, Theoretical
Power. Four types of models were created: ARIMA, gradient
boosting, CNN, and LSTM, to make time-series predictions
of the output feature ’Theoretical Power values’.

XGBoost and LSTM input a timestamp or index after the
end of the training data and output the ’Theoretical Power
prediction’. The CNN inputs three previous ’Theoretical
Power values’ and outputs the next two values.

Several standard methods for testing the model performance
(ie. k-fold cross-validation, MPE, R2) are ideal for models
with data observations that are independent [1]. However,

time series data has a temporal nature where the next data
point is dependent on the previous point, and the order of the
observations needs to be maintained.

Therefore walk-forward validation was used, coupled with
the error metrics RMSE, and MAPE to evaluate the models.
Walk-forward validation is very robust though computationally
expensive since it involves making a prediction and then
re-training the model before making the next prediction.

II. RELATED WORK

In the realm of time series analysis, where recurrent neural
networks (RNNs) and long short-term memory (LSTM) mod-
els have conventionally held sway, there is a notable paradigm
shift. Recent research, exemplified by the findings presented in
[6], underscores the growing efficacy of convolutional neural
networks (CNNs) in tasks traditionally associated with RNNs.
Notable CNN architectures like Wavenet have demonstrated
a capability to outperform LSTMs. Furthermore, innovative
approaches, such as the fusion of exponential smoothing with
CNNs, have emerged as potent strategies, showcasing an
augmentative effect on performance [2].

III. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
(ARIMA)

A. Algorithm
In the initial stages of our study, we employed a linear re-

gression model as our foundational baseline. While it initially
demonstrated commendable performance, an investigation into
time-series forecasting methodologies prompted a critical re-
alization. Subsequent research, elucidated in [1], underscored
the unsuitability of linear regression for time-series data. In
light of these insights, ARIMA was opted, recognized as an
industry standard for time series forecasting, as the revised
baseline model.

ARIMA(p, d, q) : ∆dyt = c+ ϕ1∆
dyt−1 + . . . (1)

+ϕp∆
dyt−p + ϵt + θ1ϵt−1 + . . .+ θqϵt−q (2)

The ARIMA model has three parameters (p,d,q) the Auto
Regression component, degree of differencing, and the moving
Average component which were all initialized to 1 [3]. d was
initialized to one since the data was differenced by 1, and p
and q were initialized to 1 based on the analysis of the Partial
Autocorrelation Function (PACF) plot and the Autocorrelation
(ADF) plots in Figure 1 which provide an insight into the
number of lags in the data.

Fig. 1. Autocorrelation and Partial Autocorrelation

Fig. 2. Differencing and making data stationary

B. Data Preparation and Training

After visualizing the raw time series data and conducting
a decomposition analysis, it becomes evident that the data
exhibits discernible trends and seasonality. However, the appli-
cation of ARIMA models necessitates stationarity in the input
data—devoid of trends, seasonality, and minimal autocorrela-
tion. To achieve stationarity, differencing was applied to the
data and validated its stationarity using the Dickey-Fuller test.
Subsequently, 85% of the data was utilized for training, and
15% reserved for testing.

C. Testing and Evaluation

The evaluation of the ARIMA model involved a meticulous
walk-forward validation process, culminating in the computa-
tion of the Root Mean Squared Error (RMSE) upon completion
of all predictions. As illustrated in Figure 2, where the
predicted values (depicted in red) closely align with the actual
values (depicted in blue), the model demonstrates commend-
able performance. The x-axis of the graph signifies predictions
made on approximately the last 8,000 data points in the test
set, equivalent to approximately 0.15 of the number of fifteen-
minute intervals in a year. Notably, the achieved RMSE of
356.088 is considered favorable, especially considering the
output data range from zero to approximately 3,500 kWh in
the ’Theoretical Power Curve’ feature of the dataset.

IV. XGBOOST REGRESSOR

A. Algorithm

XGBoost, short for Extreme Gradient Boosting, is a
powerful gradient-boosting algorithm that was used for
time-series forecasting of wind turbine output production.
XGBoost is an efficient implementation of the stochastic
gradient boosting machine learning algorithm. It is an
ensemble of decision tree algorithms where new trees fix
errors of those trees that are already part of the model. Trees
are added until no further improvements can be made to the
model. XGBoost provides a highly efficient implementation
of the stochastic gradient boosting algorithm and access to a
suite of model hyperparameters designed to provide control
over the model training process. [4]

Gradient Tree Boosting involves minimizing the following
regularized objective function:

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (3)

where
Ω(f) = γT +

1

2
λ||w||2 (4)

Here L is a differentiable convex loss function that measures
the difference between the prediction ŷi and the target yi. The
second term Ω penalizes the complexity of the model (i.e., the
regression tree functions). The additional regularization term
helps to smooth the final learned weights to avoid over-fitting.

B. Data Preparation and Training

The time-series data was transformed into a supervised
learning problem by first extracting the hour and the day
of the week from the timestamp. As an initial baseline,
training was performed on the first 11 months of data, and
validation on the 12th month to evaluate model performance
(see Figure 3). The hyperparameters used for baseline are as
follows: n estimators = 1000, early stopping rounds =
100, learning rate = 0.01,max depth = 5, reg lambda =
1

C. Validation, Testing, and Evaluation

The training loss, measured in terms of the RMSE (root-
mean-square error) was observed to decay exponentially with
the number of boosting rounds. The loss converged to a value
of 5 in around 1000 iterations, which was deemed sufficiently
accurate, compared to the scale of the target feature. Walk-
forward validation was also performed to test the robustness
of the model.

V. CONVOLUTION NEURAL NETWORK (CNN)

A. Algorithm

Convolutional Neural Networks (CNNs) are conventionally
employed for image processing. However, the adaptation here
involves preprocessing the data into a supervised learning

Fig. 3. Loss during training with XGBoost

Fig. 4. Predicted vs actual Values using XGBoost

paradigm. In this transformed setup, input data points encap-
sulate three sequential power values, and labels represent the
subsequent two power values. This restructuring enables the
CNN to handle the data akin to images, leveraging the sliding
convolutional layers.

Upon scrutinizing hyperparameters established for standard
CNN templates, parameters aligned with those conventions
were chosen, such as a ReLU activation function. The key
departure lies in the utilization of a 1D convolutional layer, a
deliberate choice due to the input being a series of numerical
lists rather than a 2D image with pixel values and dimensions.

CNN : Output = σ

(
N∑
i=1

(Wi ∗X + bi)

)
(5)

The above equation represents a concise mathematical ex-
pression for CNNs where N is the number of filters, Wi and
bi are the weight matrix and bias for filter i, X is the input,
* represents the convolution operation, and σ is the activation
function.

B. Data Preparation and Training

The experimentation involved the creation of two CNN
models, each trained with distinct data preprocessing ap-

Fig. 5. Predicted vs actual values using CNN

proaches—one with Min-Max normalization and another with
raw data. A meticulous procedure was followed, normalizing
the training data and consistently applying the same normaliza-
tion to the test data inputs. The rationale behind normalization
was twofold: to expedite the training process and enhance
model performance, considering the known sensitivity of neu-
ral networks to the scale of input values.

C. Testing and Evaluation

Remarkably, the non-normalized CNN outperformed its nor-
malized counterpart. The graphical representation, comparing
actual values in blue to predicted values in red, revealed
striking similarities for both CNNs. Despite this visual con-
gruence, the normalized CNN exhibited a Mean Absolute
Percent Error (MAPE) of 4.51%, while the un-normalized
counterpart achieved a lower MAPE of 3.68%. The Root Mean
Squared Error (RMSE) values closely mirrored the ARIMA
baseline, with normalized RMSE at 328.35 and un-normalized
at 328.55. The marginal impact of scaling and normalizing
the data remains unclear, suggesting that the raw values may
inherently possess a suitable scale for the model, rendering
normalization redundant and potentially counterproductive.

VI. LSTM METHOD

A. Algorithm

LSTM, short for Long Short-Term Memory, is a powerful
recurrent neural network (RNN) architecture that is being used
for time-series forecasting of wind turbine output production.
LSTM (Long Short-Term Memory) networks were designed
to address the vanishing and exploding gradient problems
that commonly occur in vanilla recurrent neural networks
(RNNs). These issues arise during training when gradients
either become too small (vanishing) or too large (exploding),
making it challenging for the model to learn long-term
dependencies. [5]

The key components of an LSTM include:

Memory Cell: LSTMs have memory cells that allow them
to store and use information over extended sequences, which
allows them to capture long-term dependencies.

Gates: LSTMs use gates to regulate the flow of information
within the cell. LSTMs have three gates — input gate, forget
gate, and output gate — each equipped with a Sigmoid
activation function. These gates regulate the flow of
information into and out of the memory cell.

Input Gate: Controls the input information that is stored in
the memory cell.
Forget Gate: Determines what information to discard from
the memory cell.
Output Gate: Filters the information from the memory cell to
produce the output. [9] [5]

Sigmoid and Tanh Activation Functions: The Sigmoid
function squashes values between 0 and 1, determining
how much of the new information to store or discard. The
hyperbolic tangent (tanh) function squashes values between
-1 and 1, regulating the update of the cell state.

B. Data Preparation and Training

Two distinct models were implemented: one incorporating
all available features and another excluding the wind
direction feature. This strategic decision was prompted by
the observed minimal correlation between wind direction and
the theoretical power curve. The evaluation was conducted
on the last 1000 data points, with the preceding 49530 rows
reserved for training purposes. Various training approaches
were explored, including using the raw data, scaling data
set values between -1 and 1, transforming the time series
problem into a supervised learning problem, and utilizing the
differences between values instead of the values themselves.
The baseline model, using the data as-is, served as our
reference.

From the baseline model, hyperparameters were tuned
iteratively through experimentation, resulting in the selection
of 200 neurons, a batch size of 100, 50 epochs, and a
dropout of 0.05. Employing the ReLU activation function
and the Adam optimizer facilitated learning rate optimization,
with dropout strategically employed to mitigate overfitting
concerns arising from the large neuron count.

Relative to the baseline model, it was decided to scale data
set values between -1 and 1 while transforming the time series
problem into a supervised learning problem. Post-testing, the
scaling was reversed on the predicted values. Notably, these
modifications yielded marginal improvements in metrics and
demonstrated accelerated convergence times, as evidenced in

Fig. 6. Loss during training with baseline LSTM

Fig. 7. Loss during training with modified LSTM

Figures 7-10.

C. Testing and Evaluation

The training loss, measured by RMSE, exhibited a
diminishing trend before stabilizing around a specific value
with minor fluctuations. For both the modified and baseline
models, the mean absolute percent error was relatively high,
with values of 994.922 and 995.992, respectively.

Despite these seemingly high errors, the graphs depicting
predicted versus actual values for both models (refer to
Figures 11-12) indicate a robust learning of data trends. The
elevated loss and diminished accuracy can be attributed to
the inherent variability in potential output values. Notably,
the modified model demonstrated a marginal 1% reduction in
mean absolute percent error, with its primary advantage lying
in significantly faster training times.

It is noteworthy that, before unscaling the predicted outputs
of the modified model, a mean absolute percent error of 1.740
was computed. This underscores the model’s effectiveness in
capturing and predicting data trends, with losses stemming
from challenges in precisely predicting exact output values.
Lastly, the exclusion of wind direction as one of the features
resulted in a minimal reduction in mean absolute percent error.

Fig. 8. Accuracy during training with baseline LSTM

Fig. 9. Accuracy during training with modified LSTM

Fig. 10. Predicted vs Actual Values using baseline LSTM

Fig. 11. Predicted vs Actual Values using modified LSTM

VII. ENSEMBLE MODEL

In our pursuit of constructing a powerful ensemble model,
an initial attempt involved stacking CNN, XGBoost, and
LSTM, leveraging the strengths of traditional models, gradient
boosting, and deep learning. However, as we delved deeper
into the implementation, we encountered compatibility chal-
lenges with stacking CNN and LSTM within the ensemble
framework. CNN and LSTM, having a deep learning architec-
ture, introduced complexities in seamless integration with the
traditional ensemble techniques. Faced with this challenge, we
opted for a pragmatic solution: a weighted average approach.
This entailed assigning different weights to the predictions of
ARIMA, XGBoost, CNN, and LSTM, respectively, based on
their strengths and performances.

f(x) =
∑
i

αifi(x) (6)

where ∑
i

αi = 1 (7)

In the above equations, the weights α can be chosen in
such a manner that minimizes overall variance. This approach
allowed us to leverage the unique advantages of each model
in a simpler and more compatible manner, ensuring a more
harmonious integration of diverse predictive methods.

VIII. CONCLUSION

In conclusion, our exploration into machine learning for
wind turbine output prediction has underscored the pivotal
role of advanced algorithms in optimizing renewable energy
systems. While ARIMA demonstrated accurate short-term
forecasts, its practicality diminishes for predicting values in
the distant future, relying heavily on walk-forward validation.
The baseline LSTM model, despite yielding a substantial
mean absolute percent error when assessed against unscaled
outputs, adeptly captured data trends. The modified LSTM
model, while marginally enhancing mean absolute percent
error, excelled in both trend capture and significantly reduced
training times.

Notably, XGBoost and CNN emerged as the most effective
models, boasting remarkably low RMSE values relative to
the data scale. Implementation challenges were minimal,
thanks to standard hyperparameters, allowing for subsequent
experimentation with normalization in CNN and optimization
techniques like early stopping rounds in XGBoost, further
enhancing performance.

While combining these models in a stacked ensemble
initially seemed promising, practical challenges necessitated
a shift to a weighted average approach. Our study illustrates
the immense potential of machine learning in revolutionizing
the renewable energy landscape. Harnessing the predictive
capabilities of machine learning, we can create efficient,

sustainable, and resilient wind energy systems, ensuring a
carbon-free electricity grid for the future.

ACKNOWLEDGMENT AND CONTRIBUTIONS

We’d like to thank the course instructors Dr. Andrew Ng,
Dr. Carlos Guestrin, Dr. Moses Charikar, and TA Sonia Chu
for their guidance and support. The project was a collaborative
effort with Taylore working on ARIMA and CNN, Hemanth
on XGBoost, and Ziyad on LSTM. We acknowledge that all
team members contributed their fair share to the project. The
link to our GitHub repository containing the code is provided
in the references section. [10]

REFERENCES

[1] How (not) to use Machine Learning for time series forecasting: Avoiding
the pitfalls (https://towardsdatascience.com/how-not-to-use-machine-
learning-for-time-series-forecasting-avoiding-the-pitfalls-19f9d7adf424)

[2] Borovykh, Anastasia, Sander Bohte, and Cornelis W. Oosterlee.
”Conditional time series forecasting with convolutional neural networks.”
arXiv preprint arXiv:1703.04691 (2017).

[3] https://www.section.io/engineering-education/univariate-time-series-
analysis-with-arima-in-python/components-of-the-arima-model

[4] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable
Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD ’16). Association for Computing Machinery, New York, NY,
USA, 785–794. https://doi.org/10.1145/2939672.2939785

[5] Benjamin Lindemann, Timo Müller, Hannes Vietz, Nasser Jazdi,
Michael Weyrich, A survey on long short-term memory networks
for time series prediction, Procedia CIRP, Volume 99, 2021, Pages
650-655, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.03.088
(https://www.sciencedirect.com/science/article/pii/S2212827121003796)

[6] Wibawa, A.P., Utama, A.B.P., Elmunsyah, H. et al. Time-series analysis
with smoothed Convolutional Neural Network. J Big Data 9, 44 (2022).
https://doi.org/10.1186/s40537-022-00599-y

[7] XGBoost or Logistic Regression Model for Diabetes Prediction,
(https://easonlai888.medium.com/xgboost-or-logistic-regression-model-
for-diabetes-prediction-1c3670cbbf6e)

[8] An intuitive explanation of LSTM and Recurrent Neural Networks,
(https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-
a035eb6ab42c)

[9] Saxena, S. (2023, October 25). What is LSTM? intro-
duction to long short-term memory. Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-
short-term-memory-lstm/#: :text=LSTM%20(Long%20Short%2DTerm
%20Memory,ideal%20for%20sequence%20prediction%20tasks.

[10] https://github.com/hemanthhariharan/CS 229 Project

[11] Qin Chen and Komla Agbenyo Folly, “Short-Term Wind Power
Forecasting Using Mixed Input Feature-Based Cascade-Connected
Artificial Neural Networks,” Frontiers in Energy Research 9 (2021),
https://www.frontiersin.org/articles/10.3389/fenrg.2021.634639.

[12] Changtian Ying et al., “Deep Learning for Renewable Energy
Forecasting: A Taxonomy, and Systematic Literature Review,”
Journal of Cleaner Production 384 (January 15, 2023): 135414,
https://doi.org/10.1016/j.jclepro.2022.135414.

